## Exercise 16

Use the method of undetermined coefficients to find the general solution for the following second order ODEs:

$$
u^{\prime \prime}-u=2 \cos x
$$

## Solution

This is an inhomogeneous ODE, so the general solution is the sum of the complementary and particular solutions.

$$
u=u_{c}+u_{p}
$$

The complementary solution is the solution to the associated homogeneous equation,

$$
u_{c}^{\prime \prime}-u_{c}=0 .
$$

This is a linear ODE with constant coefficients, so the solution will be of the form $u_{c}=e^{r x}$.

$$
u_{c}=e^{r x} \quad \rightarrow \quad u_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad u_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Substituting these into the equation gives us

$$
r^{2} e^{r x}-e^{r x}=0 .
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-1=0
$$

Factor the left side.

$$
(r+1)(r-1)=0
$$

$r=-1$ or $r=1$, so the complementary solution is

$$
u_{c}(x)=C_{1} e^{-x}+C_{2} e^{x} .
$$

We can write this in terms of hyperbolic sine and hyperbolic cosine.

$$
u_{c}(x)=A \cosh x+B \sinh x
$$

Now we turn our attention to the particular solution. Because the inhomogeneous term is $2 \cos x$ and $u^{\prime}$ is not present on the left side, try a particular solution of the form, $u_{p}=C \cos x$. Plugging this form into the ODE yields $-C \cos x-C \cos x=2 \cos x$, which means $C=-1$. Thus, $u_{p}=-\cos x$. Therefore, the general solution to the ODE is

$$
u(x)=A \cosh x+B \sinh x-\cos x .
$$

We can check that this is the solution. The first and second derivatives are

$$
\begin{aligned}
u^{\prime} & =A \sinh x+B \cosh x+\sin x \\
u^{\prime \prime} & =A \cosh x+B \sinh x+\cos x .
\end{aligned}
$$

Hence,

$$
u^{\prime \prime}-u=A \cosh x+B \sinh x+\cos x-(A \cosh x+B \sinh x-\cos x)=2 \cos x,
$$

which means this is the correct solution.
This answer is in disagreement with the answer at the back of the book, $u(x)=A \cosh x-\cos x$. Since the ODE is of second order, there have to be two constants in the general solution.

